The -Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The M-Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey

In the present review we survey the properties of a transcendental function of the Wright type, nowadays known as M-Wright function, entering as a probability density in a relevant class of self-similar stochastic processes that we generally refer to as time-fractional diffusion processes. Indeed, the master equations governing these processes generalize the standard diffusion equation by means...

متن کامل

Time-fractional Derivatives in Relaxation Processes: a Tutorial Survey

The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classical theory of linear viscoelasticity, we contrast these two types of fractional derivatives in thei...

متن کامل

Fractional Calculus of the Generalized Wright Function

The paper is devoted to the study of the fractional calculus of the generalized Wright function pΨq(z) defined for z ∈ C, complex ai, bj ∈ C and real αi, βj ∈ R (i = 1, 2, · · · p; j = 1, 2, · · · , q) by the series

متن کامل

The Wright functions as solutions of the time-fractional diffusion equation

We revisit the Cauchy problem for the time-fractional diffusion equation, which is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order b 2 ð0; 2 . By using the Fourier–Laplace transforms the fundamentals solutions (Green functions) are shown to be high transcendental functions of the Wright-type that can be interpreted...

متن کامل

Fractional Diffusion Processes : Probability Distributions and Continuous Time Random

A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Fell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Differential Equations

سال: 2010

ISSN: 1687-9643,1687-9651

DOI: 10.1155/2010/104505